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Abstract-Some recent experimental results show the existence of reflections of thermal waves at the 
interface of dissimilar materials in superfluid helium. In light of these results, a theoretical investigation of 
thermal waves in composite is provided to give a theoretical foundation to the observed phenomenon. A 
general one-dimensional temperature and heat flux fo~ulation for hyperbolic heat conduction in a 
composite medium is presented. Also, the general solution, based on the fiux formulation, is developed 
for the standard three orthogonal coordinate systems. Unlike classical parabolic heat conduction, heat 
conduction based on the modified Fourier’s law produces non-separable field equations for both the 
temperature and flux and therefore standard analytical techniques cannot be applied in these situations. 
In order to alleviate this difficulty, a generalized finite integral transform technique is proposed in the flux 
domain and a general solution is developed for the standard three orthogonal coordinate systems. The 
general solution is applied to the case of a two-rc~on slab with a pulsed volumetric source and insulated 
exterior surfaces which displays the unusual and controversial nature associated with heat conduction 

based on the mod&d Fourier’s law in composite regions. 

INTRODUCTION 

Tm ~~ST~TI~ relation which appears in classical 
heat conduction is Fourier’s law 

q = -kg. 

This relation was originally derived through empirical 
observations. When Fourier’s law is incorporated into 
the first law of thermodynamics, a parabolic tem- 
perature field equation is produced. Fourier’s law rep- 
resents one of the best models in mathematical physics 
although it possesses anomalies, the most pre- 
dominant being its prediction of heat flow at an infi- 
nite speed of propagation. This law noticeably breaks 
down in situations involving very short times, high 
heat fluxes, and at cryogenic tem~~tures where 
diffusion theory cannot account for short time inertial 
effects. However, Fourier’s law is accurate and appro- 
priate in describing heat conduction in most common 
engineering situations. 

It is apparent in situations involving short times 
and cryogenic temperature that a more accurate 
constitutive law describing the nature of heat con- 
duction be introduced. In order to associate a finite 
heat propagation velocity, while remaining within the 

continuum assumption, Vemotte [l] and others heu- 
ristically proposed the modified Fourier’s law 

where z is a finite thermal relaxation time. Physically, 
r represents the finite buildup time for the com- 
mencement of heat flow in a medium. When the modi- 
fied Fourier’s law is used in conjunction with the 
expression for the conservation of energy, a hyper- 
bolic temperature field equation [2] is attained. In this 
description of heat conduction, the thermal propa- 
gation speed c becomes finite for z > 0, namely c = 
~(u/~), where u is the thermal diffusivity. As t -+ 0, 
the thermal propagation speed approaches infinity 
and the classical parabolic Iaw is recovered. The modi- 
fied Fourier’s law has generally been accepted [3] as 
the next order approximation to the true nature of 
heat conduction It appears that Fourier’s law rep 
resents the lowest order approximation in the descrip- 
tion of heat conduction. 

In this exposition, we shall study the e&&s and 
ramifications of linear hyperbolic heat conduction in 
a composite medium. Composites are generally of 
great interest to engineers and physicists since they 
appear in numerous situations including : reinforced 
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NOMENCLATURE 

a,, aN+ , constants relating type of boundary 
condition 

aj(Am, 5) function associated with 
degenerate kernel 

b,r&+, constants relating type of boundary 
condition 

b,(1,, 5) function associated with 
degenerate kernel 

& set of constants defined by equation 

(23) 

CL propagation speed for region i 

c, specific heat 
c, (A,, 5) dependent variable defined by 

equation (29b) 

k, thermal conductivity for region i 
K(<, l,, ; &J degenerate kernel 

N(L) normalization integral 
q,,j(t) prescribed flux boundary function, 

j=l,N+l 

qi(x, t) heat flux for region i 
Qi(n, 5) dimensionless heat flux 
&(<) transform of dimensionless heat flux 

S(q, 5) dimensionless heat source 
t time variable 

7-0 initial temperature 
Z’W,j(t) prescribed temperature boundary 

functions, j = 1, N+ 1 
Ti(x, t) temperature for region i 
u,(x, t) volumetric heat source in region i 
X space variable. 

Greek symbols 

@G thermal diffusivity for region i 

rl dimensionless space variable 
B,(q, 5) dimensionless temperature for region i 

1, eigenvalues 

5 dimensionless time 

PZ density for region i 

r, relaxation time for region i 
c$(v, 5) auxiliary function 
tiim(~) eigenfunction for region i. 

Superscripts 
* dimensionless quantity. 

laminates, fins, reactor walls, stratified fluids, as well 
as many other applications. In hyperbolic heat con- 
duction, the study of the interaction of dissimilar 
materials provides additional insight and under- 
standing into the unusual behavior of heat conduction 
based on the modified Fourier’s law. Recently, the 
special case of a two-region slab with a step change 
in exterior wall temperature was presented [4] using 
conduction based on the modified Fourier’s law. This 
example displayed the unusual physics and some of 
the mathematical difficulties that are encountered in 
hyperbolic heat conduction for multilayered regions. 
However, no general formulations and subsequently 
no general analysis exist for hyperbolic heat con- 
duction in composite media. 

Presently, we develop the general one-dimensional 
temperature and flux formulations for the standard 
three orthogonal coordinate systems. Then, the gen- 
eral one-dimensional flux and temperature dis- 
tributions are developed from the flux formulation 
using a generalized finite integral transform technique. 
This technique leads to an infinite set of coupled initial 
value problems in the transform variable. The set of 
ordinary differential equations is then transformed 
into an equivalent set of linear Volterra integral equa- 
tions of the second kind with degenerate kernels. 
These integral equations are more amenable to 
numerical approximation than the original differential 
equations. The method of Bownds [lo, 1 l] is incor- 
porated to determine the transforms numerically. 
Once the flux distribution is ascertained, the tem- 

perature distribution is obtained from the con- 
servation of energy. Finally, a numerical example 
considering a two-region composite with a pulsed 
volumetric source emanating from one region shall be 
investigated. In light of some recent experiments in 
superfluid helium [5,6], in which a heat pulse was 
partially reflected at the interface of dissimilar 
materials, the results obtained here may lend some 
theoretical insight to heat conduction based on 
damped wave equations at cryogenic temperatures. 
Finally, the stark difference between parabolic and 
hyperbolic heat conduction shall be displayed. 

GENERAL FORMULATION 

Temperature andjuxjield equations 
The governing one-dimensional temperature and 

heat flux field equations are now formulated for the 
three standard orthogonal coordinate systems. Refer- 
ring to Fig. 1 and performing an energy balance [7] in 
the usual manner, one arrives at the following math- 
ematical statement for the conservation of energy in 
any region i in the multiregion medium 

XE[X,,X,+,], t>O, i=1,2 ,..., N (3) 

where 
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FIG. 1. Geometry and coordinates. 
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Eliminating qi(x, t) between equations (2) and (3) 
yields the following temperaturejield equation for any 
region i 

xE[xirxi+,], t>O, i=l,2 ,..., N. (4) 

Clearly as the relaxation time zi approaches zero, the 
standard parabolic case [7] is recovered. 

The heat Jlux field equation is obtained by elim- 
inating the temperature Ti(x, t) between equations (2) 
and (3). We find 

xE[xi,xi+,], t >O, i= 1,2 ,..., N. (5) 

As seen in equations (4) and (5), the volumetric heat 
generation term ui(x, t) appears in different com- 
binations in the two formulations. In some cir- 
cumstances, it may be more convenient to choose one 
formulation over the other merely on the basis of this 
term. Another interesting feature of hyperbolic heat 
conduction in composites is that the associated homo- 
geneous version of field equations (4) and (5), are not 
separable in the classical sense. For instance, if the 
product solution 

4i(X, 0 = tii(X)I(0 (6) 

is substituted into the homogeneous version of equa- 
tion (5) separability is not achieved as in the parabolic 
composites [7j. The reason for the nonseparability is 
the presence of the coefficient zi as a multiplier to the 
second-order time derivative. Since zi assumes differ- 

ent values for different regions, a separated solution 
in the form given by equation (6) cannot be matched 
at the interfaces for all times. That is, the function 
r(t) cannot be independent of all material properties 
as required by the classical eigenfunction expansion 
technique [7]. A generalized finite integral transform 
technique will be developed to overcome this diffi- 
culty. 

Temperature formulation of boundary and initial con- 
ditions 

First, we consider the appropriate boundary con- 

ditions associated with the temperature formulation. 
Convective heat transfer is not considered since hyper- 
bolic heat conduction is valid for small time, i.e. times 
prior to the onset of mass movement. The mode of 
heat transfer between liquid-solid regions is con- 
sidered only by conduction. For a specified tem- 
perature or heat flux at an external surface, the appro- 
priate boundary condition becomes 

-a,k,z+b,T, =a, 
dqw , 

z,~ & +%“,l ct) 1 
+b,T,,,(t), x = xl (7a) 

a~+ikN~+b,+,TN = aN+, 
dqw .v+ , 

7Ndt 

+ qw+ I (0 
I 

+ b,+ , Tw,,v+ I (0, x = x.v+ , (7b) 

where the general notation introduced above reduces 
to the prescribed temperature T,,,j(t) or heat flux 
q&t). j = 1, N-t 1 boundary conditions depending 
on the various combination of the coefficients a, and 
bj. For example, if a prescribed temperature at x = x, 
were specified, then a, = 0, b, = 1, would be required. 
If however a specified heat flux is given, the coefficients 
would simply be a, = 1, b, = 0. A similar interpret- 
ation can be made when considering the boundary 
condition at x = x,,,+ , 
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At the interface of two adjacent regions, two bound- 
ary conditions are required ; namely, continuity of 
temperature, which implies perfect thermal contact, 
and continuity in heat flux. Continuity of temperature 
is expressed as 

T, = Ti+,, x=x,+, i = 1,2,. ., N- 1 (7~) 

while continuity in heat flux is 

qi=qi+,, x=xi+, i=l,2 ,..., N-l. (7d) 

Carefully eliminating both qi and qi+ , from equation 
(7d), using equations (2) for each region i yields 

-k z,+I 
[ 

s++# -k,+, [7i!?!?i& 

ar,,, 
+F > x=&+1, 

1 
i = 1,2,...,N-1 (7e) 

where r, # r,+ , If z, = z,+ , , the usual parabolic heat 
conduction boundary condition is obtained 

aT. -kig = -ki+, + x = xi+ I > 

i=l,2 ,..., N-l, t>O. (7f) 

Equation (7e) represents a new linear, second-order 
boundary condition with mixed spatial and time 
derivatives which has not yet appeared in heat con- 
duction. This new expression introduces additional 
complexity since it is nonseparable. As the relaxation 

times ri and TV+, approach zero, we see that equation 
(7e) is consistent with the parabolic formulation. 

For convenience, the initial state of the medium is 
taken at the equilibrium temperature To. The initial 
conditions are readily established as 

aT. 
T, = To, -=o, t=o, XE[Xi,X,+,], at 

i= 1,2 ,..., N. @a,b) 

Once the temperature distribution has been deter- 
mined, the heat flux distribution may be obtained by 
solving the modified Fourier’s law, equation (2), for 
the heat flux distribution in each region i or by solving 
the energy conservation equation, equation (3), for 

q,(x, 0. 

Flux formuIation of boundary and initial conditions 
For a specified temperature or heat flux at an exter- 

nal surface, the appropriate boundary conditions in 
the heat flux variable are expressed as 

dTw, 
(pC,),dt-~, , x=x1 (94 1 

and 

I a 
u~+ I qN -by+ I 2 G cxpqN) 

= - ON+ I qw,N+ I @) 

+ bN+ I 

dTwN+, 
(PC,), dt -UN > 

1 
X = xN+ I (9b) 

where the coefficients a,, b,, j = 1, N+ 1 have the 
same interpretation as the coefficients associated with 
temperature boundary conditions (7a) and (7b). In 
equations (9a) and (9b), conservation law (3) was used 
to convert a prescribed temperature boundary into 
the flux domain. If a prescribed surface temperature 
involves a step change in the surface temperature, then 
the terms involving the time derivative on the right- 
hand side of equations (9a) and (9b) will involve delta 
functions and the use of generalized functions will be 
necessary to preserve correctness in the formulation. 

The statement of continuity of temperature at an 
interface can be formulated in the heat flux domain 
by taking the partial derivative with respect to time 
of equation (7~) and incorporating equation (3) to 
obtain 

1 
~ [-;f$x”q.)+u. =- 

1 

1 

(PC,), (PCJi+ I 

*[-~~w7i+l~+ui+l ? 1 x=x,+,. (9c) 

Equation (SC) represents a separable but non-homo- 
geneous boundary condition which is valid for both 
parabolic and hyperbolic heat conduction. Continuity 
of heat flux at the interfaces is simply expressed by 
equation (7d). 

Considering the medium initially at the equilibrium 
state, the initial conditions are 

qi =o, aqi 
-=O, t=O, i=l,2 ,..., N. (lOa,b) at 

Once the flux distribution has been established, the 
temperature distribution may be resolved by a time 
integration of the energy balance, equation (3) or by 
the spatial integration of the modified Fourier’s law, 
equation (2), for each region i. 

ANALYSIS 

The previous formulation reveals that the field 
equations for temperature and heat flux, given by 
equations (4) and (5), respectively, have similar form 
except for the non-homogeneous source contribution. 
However, the statement of continuity of heat flux at 
the interfaces is quite convenient in the flux domain, 
as given by equation (7d), while the equivalent state- 
ment in the temperature variable, as given by equation 
(7e), represents a non-separable condition with mixed 
partial derivatives. Due to this added mathematical 
complexity, we choose to develop an analytical solu- 
tion directly in the heat flux domain and then recover 
the temperature distribution by a time integration of 



General formulation and ,malysis of hyperbolic heat conduction in composite media 1297 

the energy conservation law, equation (3). A gener- 
alized finite integral transform technique is developed, 

capable of yielding very accurate results for non-sep- 
arable hyperbolic partial differential equations. This 
generalized transform technique reduces to the exact 
solution for situations where separability can be ach- 
ieved, that is, when the relaxation times are identical 
in each region. 

For convenience in the subsequent analysis, we 
introduce the following dimensionless quantities 

where c, = J(u,/z,) and 

Qih 5) = (1 lc) 

(114 

(lie) 

and the dimensionless property ratios 

i= 1,2,... ,N. (12a-d) 

The reference temperature T,, is chosen to charac- 
terize the thermal disturbance of interest. Also, T, rep- 
resents the initial temperature associated with the 
equilibrium initial state. 

Introducing the dimensionless quantities expressed 
above into equations (5), (9) and (10) produces the 
general one-dimensional system governing the dimen- 
sionless flux distribution. The dimensionless flux field 
equation for a general one-dimensional composite is 

where L,,,, is the operator defined as 

(13b) 

where p represents the particular geometry as ex- 
pressed in equation (3) and i represents the region. 
The particular form of LP,i is naturally suggested by 
the dominant wave nature of the system under con- 
sideration. The dimensionless boundary conditions 
become 

rl =‘II (144 

Qi = Qi+ I U4b) 

cc: 
-[-&$Qi,+; k: 1 

q=q,+,, i=1,2 ,..., N-l (14~) 

=a%+, Q I (5) + bN*+ I 

k* d&v,+, 
w,~+ 

_%+?A 
a; dt 1 ’ 

v = 1lN,l> 5 > 0 (14d) 

where the boundary coefficients a,*, b,*, j= 1, N+ 1 are 
the dimensionless counterparts of the general notation 
introduced in equations (9a) and (9b). The dimen- 
sionless initial conditions become 

8Qi 

Qi = 0 (15a) 

-=O, t=O, i=1,2 ,..., N. 
x U5b) 

Equations (13t(lS) constitute the complete math- 
ematical formulation to uniquely determine the 
dimensionless flux distribution once the thermal dis- 
turbances have been specified. Finally, the dimen- 
sionless equation governing the conservation of 
energy is 

We shall now develop a generalized finite integral 
transform technique capable of yielding accurate 
numerical results. 

GeneralizedJinite integral transform technique 
Since equations (13H15) constitute a system which 

is nonseparable in the classical sense, as described with 
regard to equation (6), standard analytical solution 
techniques such as the finite integral transform fail. 
However, suppose we view the right-hand side of 
equation (13a) as an effective heat source or non- 
homogeneity. We then develop the solution method 
by considering the auxiliary problem 

i= 1,2,...,N (17) 

which is the classical (separable) wave equation. 
The eigenfunctions r,k,(r~) and eigenvalues 2, are 

chosen by considering equation (17) and the homo- 
geneous versions of equations (14at(14d), where 

Qh 5) is replaced by qh(v, 0. 
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The appropriate eigenvalue problem then becomes 

subject to the boundary conditions 

(18b) 

1 

$i,=ll/i+~,,,,, v=%+~, i= 1,2,...,N-1 (18d) 

? = vlv+ I (184 

where a,+, b:, j = 1, N+ 1 are the boundary coefficients 
introduced in equation (14). The eigenvalue problem 
presented above is of the same type encountered in 

parabolic heat conduction [7]. 
The eigenfunctions obey the following important 

orthogonality relation 

where the normalization integral is defined as 

N(i,) = ‘f 6 
s 
“+I q$&($dq. (19b) 

i= I ‘I=?, 

Using this orthogonality relation, we now develop the 
integral transform pair as 

inversion formula 

integral transform 

m=0,1,2 ,..., 520. (20b) 

Having defined the integral transform pair in equa- 
tions (20a) and (20b), we remove all spatial depen- 
dence from equation (13a) by operating on it with 

t If exterior BCs are of second kind, m starts at 0. 

4+im(v) dv (21) 

and sum over all regions i = 1,2,. . . , N. After some 
manipulation, the following ordinary differential 
equation for each m appears 

d*&m(5) 
7 

An expression for A,,,(t) can be written in terms of 
the boundary conditions explicitly. Substituting the 
inversion formula, equation (2Oa), with the new 
dummy index 1, into equation (22a) yields 

WC) 

subject to the transformed initial conditions 

L(O) = 0 (22d) 

and 

d&(O) o, 

d5 

The constants B,,,, are defined as 

Solution for transforms 

The solution for the integral transform am(t), as 
described in equation (22c), involves solving an infi- 
nite set of coupled ordinary differential equations with 
constant coefficients subject to the initial conditions 
expressed by equations (22d) and (22e). As shown in 
ref. [4], A,,,(t) may contain generalized functions, e.g. 
the Dirac delta function, which may cause some 
difficulty if equations (22c)-(22e) were solved directly 
by some numerical method. 

Before proceeding with the general solution, we 
observe the similarity between the definition of B,, 
expressed in equation (23) and the orthogonality 
relation expressed in equation (19a). For the situation 
in which all the regions in the composite have identical 
relaxation times, i.e. it = 1 for all i, the coefficients 
defined in equation (23) reduce to 
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4, = 
0, I#m 

N&J, I = m. 

For this case, equation (22~) for the transforms 
become uncoupled and can be solved directly to get 

x sin [J(Af, - 1) (5 - to)1 dto (25) 

validfor$=l,i=l,2 ,..., N. 
For the more general case of regions with different 

relaxation times, equations (22c)-(22e) must be solved 
simultaneously. Although the solution to these 
coupled equations may be formally expressed in an 
exact analytical form, the large number of terms typ- 
ically required for hyperbolic systems makes this 
approach unfeasible when numerical results are 

required. As an alternative, we proposed in ref. [4] to 
convert equations (22ct(22e) into an equivalent set 
of linear Volterra integral equations of the second 
kind. Using the Laplace transform technique and 
incorporating convolution, we arrive at 

-s r 
C&t,) ~0s A& - toI d5 (264 

e,=o 

where 

.M<) = 6’_. y sin &,(5--lo) d50. (26b) 
0 m 

The ‘kernel’ present in equation (26a) namely 
cos A,,,(& co) is degenerate [9], that is, it can be written 
as a finite sum of products of two linearly independent 
functions, one which depends on l and the other on 
to. We express this kernel as 

K(5,50 ; u = cm ut - 50) 

= ,c, uj(n,, Obj (A,, 50) (27) 

where the following form is chosen 

a,(&n,5) = cos&& Mm, 5) = sin A,& 

b,(km,5,) = cos1,5,, M~,,~O) = sin &&. 

(28a-d) 

The method of Bownds [l&12] shall now be utilized 
in evaluating the integral equation representation of 
&(&J as described by equation (26a). Briefly, this 
method transforms a general decomposable (degener- 
ate) Volterra integral equation into a first-order initial 
value problem in a new variable. This technique is 
reminiscent of the usual solution technique applied to 
degenerate kernels in linear Fredholm theory. The 
method of Bownds may also be applied directly to 
semidegenerate integral equations. If a kernel is not 
exactly decomposable, a kernel approximation can be 

made to form a degenerate kernel. The numerical 
solution of this new smoother variable is obtained by 

a Runge-Kutta scheme, then the original transform. 

variable &Jr) is reconstructed. Runge-Kutta and 
other initial value schemes are a paradigm to numerical 
analysis and many individual schemes are available 
with unique features. Fixed step size explicit inte- 
grators like the standard fourth-order Runge-Kutta 
or Butcher’s method may be directly applied. Various 
explicit, semi explicit, and implicit Runge-Kutta 
methods [ 131 are available containing characteristics 
which may be exploited. 

Writing equation (26a) in terms of the finite sum 

expressed in equation (27) yields 

where 

j = 1,2, 5 > 0. (29b) 

Once c,(&,, l), j = 1,2 is determined numerically, the 
transform Q,,(t) is found from equation (29a). 

The equations governing the new functions cj(&,, <) 
are obtained by differentiating equation (29b) and 
substituting equation (29a) into the result to get 

j = 1,2, 5 > 0. (30a) 

The required initial conditions are obtained by eval- 
uating equation (29b) at 5 = 0 to get 

c,(n,,O) = 0, j = 1,2. (30b) 

We solve this set of equations, after truncating the 

I series after a finite number of terms, by a Runge- 
Kutta method. Once the cis are known, the integral 
transforms Q,,(t) are found from equation (29a) for 
each m. Finally, the flux distribution is resolved using 
the inversion formula expressed by equation (20a). If 
7,* = 1 for all regions, the exact analytical solution is 
obtained by substituting equation (25) into the inver- 
sion formula expressed by equation (20a) to get 

~e~~5~*~sin[~(1~-l)(~-~o)]d~o, 

i= 1,2,..., N, 5 > 0. (31) 

In ref. [4], we obtained the temperature distribution 
by a spatial integration of the modified Fourier’s law. 
However, in general one must use the conservation of 
energy equation as expressed in equation (16). A time 
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integration of equation (16) yields 

520, 1=1,2 ,..., N (32) 

where &(n, 0) = 0, i = 1,2, . . ,N, from consideration 
of the equilibrium initial state. 

In general, we substitute the inversion formula into 
equation (32) to get 

VdCo , 
1 

i=l,2 ,..., N. (33) 

For the general case of regions with different relax- 
ation times (r: # 1 for at least one 9, a relation for 
the integral of the transform can be developed using 
known functions and the numerically resolved cis. 
After some manipulation, we find 

2 cj (hn 3 5) daj (An 3 5) 
+j?, a2 d5 

. (34a) 
m 

If r,+ = 1 for all i, an exact evaluation of the integral 
of the transform leads to 

s <Ix0 &(5o)dto = - & s ’ Am(50) 
e,=o 

sinJK-l)(5-t0) 
JR,-1) 

+cos JcCt- l)(t-co) G-o 

*_ * xi -q+,, i=1,2 ,..., N. W) 
Therefore, the temperature distribution in each region 
is known from equations (33) and (34a) for the general 
case and is known from equations (33) and (34b) when 
r* = 1 for all i. If 1, = 0 (m = 0) is an allowable 
eigenvalue in the flux formulation, care must be taken 
in evaluating Ao([),fo(<), and the integral of the trans- 
form. For 1, < 1, expressions (25), (31) and (34b) 
containing ,/(nf - 1) are still real valued since the 
trigonometric functions of complex arguments 
become hyperbolic functions of real arguments. 

The flux and temperature distributions are now 
completely available for the three standard orthog- 
onal coordinate systems. When rf = 1 for all i, an 
exact analytic solution was developed and will serve 
to check the numerical scheme. Next we will study 

a particular example considering a two region slab 
subjected to a pulsed source. The corresponding para- 
bolic solution is also displayed to show the distinct 
differences in the two heat conduction approxi- 
mations. 

RESULTS 

Numerical results displaying the unusual nature of 
hyperbolic heat conduction in a two region (N = 2) 

slab (P = 0) are presented. The fundamental nature 
of hyperbolic heat conduction is best represented by 
considering a pulsed volumetric source of width Ax 
emanating from region 1 adjacent to the exterior sur- 
face at x = 0. This source is described mathematically 
as 

x, =O<x<Ax 

Ax < x < x2 

x2 < x < x3 (354 

where 

m Ax 

uo = ss u,(x,t)dxdt < co. (35b) 
r=o x=0 

The term U. represents the total amount of energy 
generated by the source per area perpendicular to the 
x-direction for all space and time. By choosing the 
reference temperature as Trcf = Uoc, /k,, we obtain 
the dimensionless sources 

r/,=O<q<Ax 

S2h 5) = 0, ?2 < 9 < ?3. (35c) 

We consider the situation where the two external 
boundaries are insulated for all time t > 0. In this 
situation, the total energy content of the system is 
preserved. The corresponding boundary coefficients 
are a, = a2 = 1, b, = b2 = 0. While the dimensionless 
counterparts become a: = a: = 1 and b: = bf = 0. 
Now, all the necessary ingredients for determining a 
unique solution are present. The parameters k;, crf 
and zf are varied in order to study the consequences 
and features associated with heat conduction based 
on the modified Fourier’s law. A standard fourth- 
order Runge-Kutta [13] was considered in resolving 
c,(&,,, <), i = 1,2, m = 1,2,. numerically when 
7: # 7:. This explicit integrator was chosen for its 
combination of accuracy and ease of programming. 
When 7: = 7:, the exact analytic solution (both flux 
and temperature formulation) are presented. Com- 
parison of the two formulations shows that the in- 
finite series representing the flux and temperature 
distributions converge at different rates. The two for- 
mulations produce identical results in the limit, thus 
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showing their equivalence and the correctness of the 
flux formulation. As is generally known, infinite series 

solutions for hyperbolic (wave) equations converge 
much slower than parabolic equations. The rate of 
convergence is related to the behavior of the terms in 

the bilinear series. 
Figure 2 displays the flux distributions for the case 

where kf = 2, r? = a: = 1 for various times 5 as 
predicted by the hyperbolic and parabolic approxi- 
mations of heat conduction. The dimensionless pulse 
width of the source is initially A9 = 0.05 and is initially 

released in the interval 0 < 9 < Ar]. At 5 = 0.1, the 
definite wave nature associated with hyperbolic heat 
conduction is evident. The initial pulse width doubles 
after being released at t = O+ since it initially has 
no preferred direction. Ahead of the wave lies an 
undisturbed region. This result is identical to the half 
space problem. In contrast, the parabolic approxi- 
mation shows a continuous distribution which is 
smaller in magnitude. By 5 = 0.7, the initial wavefront 
has encountered the interface and has split into two 
waves traveling in opposing directions. One represents 
a reflected wave (traveling left) and the other rep- 
resents the transmitted wave (traveling right) while 
both retain the initial wavelike features. This division 
initially occurred at 5 = 0.45 due to the impacting of 
the original wave into the interface at r) = 0.5. In 

contrast, the parabolic approximation shows a 
monotonic decay toward steady state. 

By 5 = 1.3, a pure reflection at the external bound- 
aries has taken place. A pure reflection occurs because 
the insulated boundary conditions do not permit 
energy to leave the system. Each wavefront then 
approaches the interior interface at 1 = 0.5 at the 
same speed and will initially impact at 5 = 1.45. This 
impact appears to cancel the weaker of the two fronts 
as seen at 5 = 1.9. Meanwhile, parabolic heat con- 
duction approximation has attained its steady state 
value. 

Figure 3 displays the temperature distributions cor- 
responding to the situation described in Fig. 2. Hyper- 
bolic heat conduction predicts higher temperatures 
and fluxes than the parabolic approximation. The 
wavefront, of width 2Aq, is preserved for all reflec- 
tion-transmission effects when the wave speed in 
region 2 is unity, i.e. CT = c, * = 1. At 5 = 0.1, the 
wave train shows the effects of diffusion in two ways 
with a residual temperature in the wake of the pulse 
and with a slant across the top of the initially flat 
wavefront. At 5 = 0.7, we see two distinct waves 
which result from the impacting of the initial wave 
at 5 = 0.45 into the interface at rl = 0.5. Notice the 
wavefront traveling to the left is negative cor- 
responding to temperatures below the initial tem- 
perature. Since k; > k:, less resistance causes more 
energy to enter region 2, thus creating the temperature 
lull of negative temperature wavefront in order to 
preserve the energy content of the system. Since the 
total energy is the spatial integral of the temperature 
times the heat capacity PC,, the energy content rep- 
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FIG. 2. Comparison of hyperbolic and parabolic heat flux 
distributions for a sequence of times with k: = 2. 

resented by each curve is identical since (PC,), 
changes in direct proportion to k: when a: is held 
constant. Also, since the external boundaries are insu- 
lated for all time 5 > 0, the total energy content is 
constant. At 5 = 1.3, the wave fronts have reflected 
from the exterior insulated surfaces and are directed 
toward the interface at to = 0.5. The dominant wave 
emanating from region 2 later combines with the sub- 
dominant wave to form a single wave moving toward 
the origin as seen clearly at r = 1.9. This trans- 
mission-reflection+ombination phenomenon will 
persist until diffusion dominates. 

The remaining figures help provide a fundamental 
understanding into the effects of the parameters k:, cc: 

and 7: on hyperbolic heat conduction in composites. 
Figure 4 shows the effect of k: on the temperature 
and flux distribution. The single region (kz = 1) solu- 
tion is presented as a reference to judge the effect of 
a higher and lower conductivity in region 2. At 
5 = 0.1, the temperature distributions for all three 
cases considered are identical since the wavefront is 
unaware of region 2 at this time. At < = 0.7, the dis- 
tinction between the three values of kf becomes clear. 
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FIG. 3. Comparison of hyperbolic and parabolic temperature 
distributions for a sequence of times with k: = 2. 

When k$ = 2 > k:, the forward wavefront is smaller 
in magnitude compared to the equivalent one-region 
standard. The reflected portion, which initially en- 
countered the interface at t = 0.45, shows a wave mov- 
ing toward the origin but negative in magnitude. 
Again, this temperature lull is due to the enhanced 
ability of region 2 to transmit energy and the basic 
criteria of energy conservation. When k: = 0.5, the 
forward temperature wave is greater than the one- 
region (k: = 1) counterpart, while a positive mag- 
nitude wave is reflected toward the origin. Again, this 
is consistent with energy considerations. The cor- 
responding flux distributions display similar features. 

The effect of various diffusivities in region 2 are dis- 
played in Fig. 5. Since the wave speed ratio is ,/cf 
= J(t(:/z;), we expect different speeds in region 2 
when a: # 1. At 5 = 0.1, all curves are again identical. 
At 5 = 0.7, the distinctions between the various diffu- 
sivities a: = 0.5, 1, 2 are evident. When cc: = 2, the 
wave speed c: is greater than the one-region (c$ = 1) 
standard, giving rise to a stretching of the width of 
the pulse disturbance. At 5 = 0.45, the leading edge 
of the pulse impacts the interface at rl = 0.5, and the 
wave emerging from the interface in region 2 is pulling 
away faster (c$ > c r) than the oncoming energy from 

- kz*=2 

0.5 

POSITION, 7 
I 

FIG. 4. Effect of k: on temperature and heat flux. 

region 1. Hence, the net effect is the stretching of the 
pulse width. This is evident in both the temperature 
and flux distributions. The opposite occurs when 
c? < c:, as seen when oz: = 0.5. As the energy leaves 
the interface when 5 = 0.45, a ‘pile-up’ of energy 
occurs since the wave leaving the interface moves 
slower than that entering the interface, hence a thinner 
pulse width emerges. The reflected portion, when 
GI: = 2, shows a temperature wave directed toward 
the origin consistent with the energy content of the 
system. Also, the reflected wave corresponding to 
cc: = 0.5, displays a negative temperature wave 
directed toward the origin. This again is consistent 
with conservation of energy in the system. 

Finally, the effect of various relaxation times in 
region 2 is studied. For fixed kf = cr: = 1, the wave 
speed in region 2 should change for various relaxation 
times 7:. In Fig. 6, the distributions plotted are 
obtained from the numerical procedure outlined in 
the analysis section since no exact solution is available. 
When 5 = 0.7, three distinct curves exist for the vari- 
ous relaxation times in region 2 for t: = 0.5, 1, 2. 
When r: = 2, the wave speed in region 2 is less than 
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FIG. 6. Effect of 2: on temperature and heat flux. 

geneous, constant coefficient ordinary differential 
equations in the transformed variable. Since these 
equations may contain generalized functions and since 
a large number of terms of the infinite series are 
required, standard numerical solution techniques are 
not well suited. Thus we transform these ordinary 
differential equations into an infinite set of linear Vol- 
terra integral equations of the second kind. Since the 
kernels are exactly decomposable, the method of 
Bownds is applied in a unique and non-standard man- 
ner to numerically solve for the transforms. An exact 
analytical solution for the temperature and flux dis- 
tributions is available when the relaxation times for 
each region are identical. The accuracy of the pro- 
posed flux formulation and numerical procedure may 
then be tested. The analysis presented here has the 
potential application to non-linear problems. 

0 0.5 
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FIG. 5. Effect of a: on temperature and heat flux. 

the one-region standard (z: = I). Again, a com- 
pressed pulse appears due to the dissimilar wave 
speeds of the two regions. The wave speed increases 
when z: = 0.5 and the pulse width expands accord- 
ingly. The total energy content of the system is pre- 
served for each temperature distribution. 

CONCLUSIONS 

The general constant property heat flux and tem- The contrast between the parabolic and hyperbolic 
perature formulation, based on the hyperbolic heat heat conduction approximations in a two-region slab 
conduction approximation, has been developed for exposed to a pulsed volumetric source is displayed. 
multiregion media. These new fo~ulations produce The numerical procedure for finding the integral 
a linear but non-separable system. In addition, the transform is shown to be numerically accurate for the 
temperature formulation produces a new non-sep- test cases where the relaxation times are identical in 
arable higher order boundary condition at the inter- both regions. The figures displaying both the exact 
face of two adjacent regions. These fo~ulat~ons analytical and nume~~liy accurate profiles are ident- 
recover the standard parabolic approximation as the ical. It is shown that internal reflections at the interface 
relaxation times in each region approach zero. Since of two dissimilar media are present and the extent 
these systems of equations are nonseparable, a gener- of the reflection varies with properties. For various 
alized finite integral transfo~ technique is proposed combinations of material properties, the wave may 
which produces an infinite set of coupfed, non-homo- change speeds and deformation of the pulse width 
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may occur. In light of some recent experiments involv- 
ing reflections of thermal waves in superfluid helium 
[5,6] the present investigation will help to provide a 
sound theory for predicting this complex phenom- 
enon. 
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FORMULATION GENERALE ET ANALYSE DE LA CONDUCTION HYPERBOLIQUE 
DE LA CHALEUR DANS LES MILIEUX COMPOSITES 

R&aum&Quelques resultats exp~rimentaux r~ents montrent l’existence de reflexion d’ondes thermiques 
a l’interface de materiaux differents dans l’h&m suoerthride. A la lumiere de ces resultats, une recherche 
sur les ondes thermiques dans les composites est faite pour fournir une base theorique au phenomine 
observe. On presente une formulation gentrale de la conduction monodimensionnelie hyperbolique dans 
un milieu composite. La solution generale, basee sur la formulation du flux, est developpee pour les systemes 
a trois dimensions orthogonales. Contrairement a la conduction parabolique classique, la conduction basee 
sur la loi modifite de Fourier produit des equations de champ ins&parables pour, a la fois, la temperature 
et le flux et par suite les techniques analytiques classiques ne peuvent &tre appliquees. De faGon a surmonter 
cetm difficulte, on propose une technique de tr~sfo~ation intbgrale, finie, g&&ale pour le domaine du 
flux et une solution generale est developpie pour les systemes t~dimensionels. La solution generale est 
appliqde au cas dune plaque a deux regions, avec une source volumique pulsee et des surfaces externes 
isolies, qui montre la nature, inhabituelle et cause de controverses, associie a la conduction basee sur la 

loi de Fourier modifiee dans les regions composites. 

ALLGEMEINER ANSATZ UND ANALYSE DER H~~PERBOLISCHEN 
WARMELEITUNG IN VERBUNDMATERIALIEN 

Zusammenfassung-Einige neue experimentelle Ergebnisse zeigen die Existenz der Reflektion von ther- 
mischen Wellen an der Grenzflache von verschiedenartigen Materialien in supraleitendem Helium. Ange- 
sichts dieser Ergebnisse wird eine theoretische Untersuchung von thermischen Wellen vorgestellt, die eine 
theoretische Grundlage des beobachteten Phanomens liefert. Ein allgemeiner eindimensionaler Ansatz fur 
die Temperatur und den W~rmestrom bei hy~rbolischer W~rmeleitung in Verb~dmaterialien wird 
vorgestellt. Die allgemeine Msung, die auf dem Ansatz fiir den Warmestrom basiert, wird f% die iiblichen 
drei orthogonalen Koordinatensysteme entwickelt. Abweichend von der klassischen parabolischen Wlr- 
meleitung, ergibt die auf dem modifizierten Fourier-Gesetz basierende Warmeleitung nichtliisbare Feld- 
gleichungen fiir die Temperatur und den Warmestrom, weshalb analytische Standardtechniken nicht ange- 
wendet werden kiinnen. Urn diese Schwierigkeiten zu erleichtern, wird fur den Wlrmestrom ein generalisiertes 
Endlich-Integral-Transformationsverfahren vorgeschlagen und eine allgemeine Liisung fur die iiblichen 
drei orthogonalen Koordinatensysteme entwickeft. Die allgemeine Liisung wird auf den Fall einer Zwei- 
~hi~h~n-Platte mit einer gepulsten Volumenquelle und isolierten Au~n~~chen angewendet, die die 
ungewohnliche und kontroverse Beschaffenheit der auf dem modifizierten Fourier-Gesetz basierenden 

Warmeleitung in zusammengesetzten Bereichen darstellt. 
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OEllJAIl @OPMYJlMPOBKA M AHAJIM3 1-Ml-IEPEO~MYECKO~ 3AflAWi 
TEllJIOl-IPOBO~HOCTM B CSIO)KHbIX CPEAAX 

ArmoTauneHeKoTopbIe IlOCneAHHe 3KCIlepHMeHTanbHbIe pe3ynbTaTbI IIOKa3bIBalOT, 'iTO B CBepXTeKy- 

qeh4 renHH Ha6JImAaeTCn orpaaemie TennonbIx nonH Ha rpaHwe pa3HopoAHbIx MaTepuanoe. B cneTe 
3THx pe3ynbTaToe npeAnpwiinT0 Teoperwiecxoe nccneAoaanHe Tennonbtx nonH n cnolHoM MaTepHane 

Ann TeoperH~ecKoro 060CHOBaHHK Ha6nIoAaeMoro nBnetiW% Paspa6oTaHa o6mar nOcTaHOBKa OAHO- 

~epnoiiranep6onu~ecKoii3ana~aTennonpoeonHocTHacnom~okcpeAeannTe~nepaTypbIHTennonoro 

noToKa.06mee pemeeae,ocHonaHHoe Ha @opMynkipoeKe3anawiann Tennonoro noToKa,npeAcTaaneHo 

B CTaHAapTHbIX OpTOrOHanbHbIX CWCTeMaX KOOpA&iHaT. B OTnWIWe OT KnaCCkiWCK0i-i napa6oneqecKoii 

3aAasu TennonpononHocTw Mone@wipoeaHnbIB 3aKoH @ypbe AaeT Hecenapa6enbHbIe ypaeHeHRa ~.na 

noneilTeMnepaTypb1 A Tennonoro nOT0Ka.W n03TOMy CTaHAapTHbIe aHaJlHTwleCKWe MCTOAbl HenpHMe- 

HHMbI B AaHHOM Cny'Iae. &In yMeHbmeHWl 3TWX TpyAHOCTeii o606meHHbIfi MeTOA KOHeYHbIX WHTer- 

panbHbIX IIpeO6pa30BaHu8 npenoxeH Mn ypaBHeHwn Tennonoro nOTOKa,a o6qee pemeHHe nonyrekio 
llJlR CTaHAapTHbIXOpTOrOHanbHbIXCkiCTeM KOOpAkiHaT.06mee FWlIeHlle IlpliMeHleTCKAnKCny~an AByX- 

30HHOji IInaCTUHbI C IlynbCEipyFOUWM 06aeMHbIM HCTOYHUKOM W H3onHpOBaHHbIMH BHemHHMW IlOBepX- 

HOCTIIMW, KOTOpbIti HeO6bI'IeH H CJIOECH, ‘(TO CBII3PHO C RCllOJIb30BaHHCM MOAH&U,HpOBaHHOrO 3aKOHa 
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